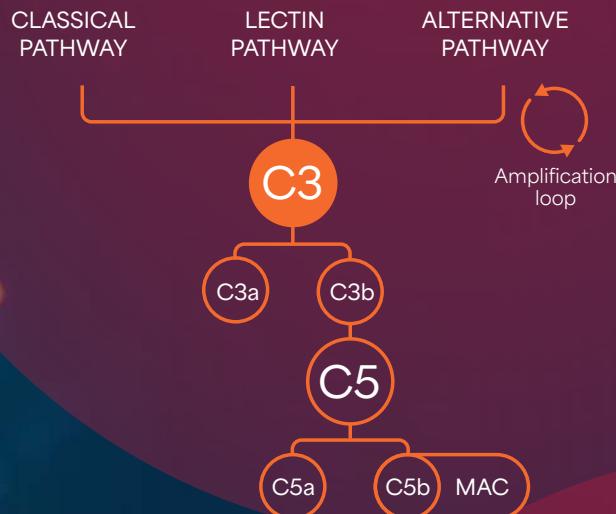



# Rare, Chronic, Complement-Driven Glomerular Diseases

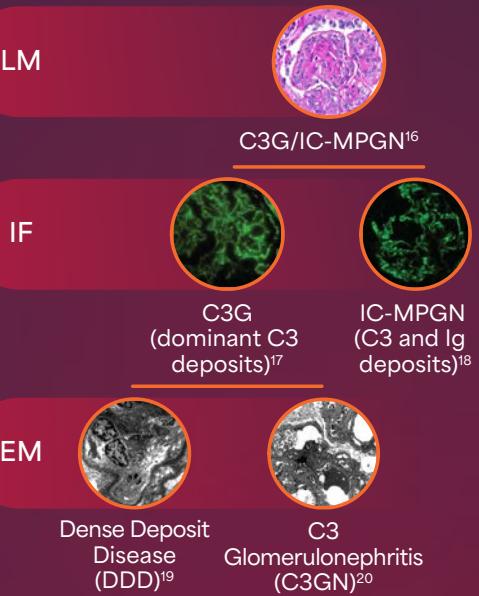

C3G and  
IC-MPGN

C3G, C3 glomerulopathy; IC-MPGN, immune complex  
membranoproliferative glomerulonephritis.



Apellis

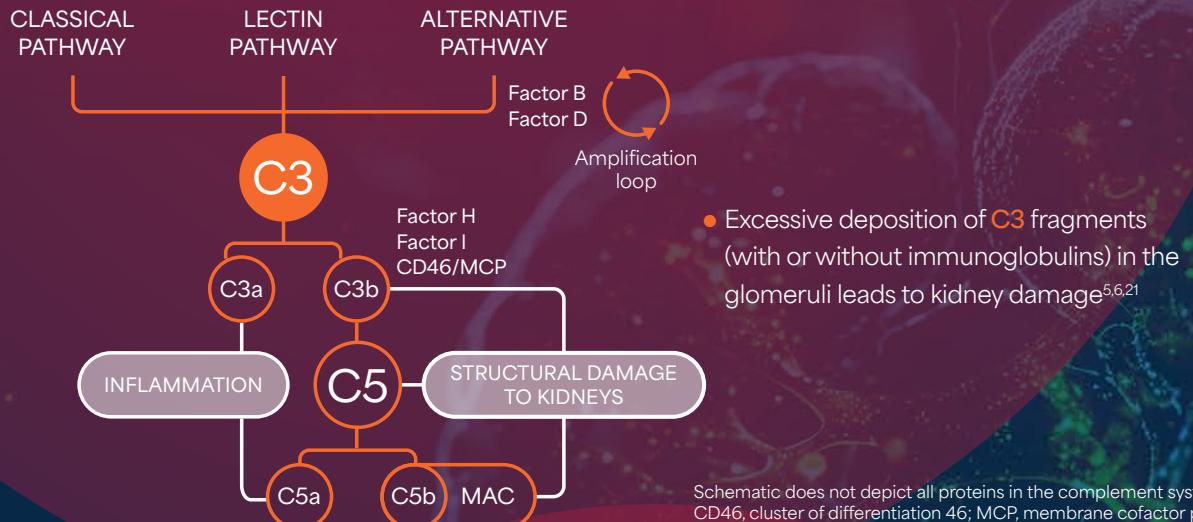
# Complement System<sup>1-3</sup>




- Central component of the innate immune system comprising a network of proteins across 3 distinct pathways
- Activation initiates an interconnected downstream signaling cascade to eliminate foreign or damaged cells
- C3 represents the convergence point of the complement cascade

Schematic does not depict all proteins in the complement system.  
MAC, membrane attack complex.

## C3G and IC-MPGN


- Group of rare, progressive, complement-driven diseases estimated to affect  $\approx$ 5000 individuals in the United States<sup>4-6</sup>
  - Incidence of C3G in the United States is 1-3 cases/1,000,000/year<sup>5</sup>
  - Up to 50% of patients progress to end-stage kidney disease (ESKD) in 5-10 years and may require transplantation(s)<sup>5,7-9</sup>
  - Disease recurrence post transplant occurs in up to 89% of patients; allograft loss due to disease recurrence occurs in up to 60% of posttransplant patients<sup>7,8,10-15</sup>



EM, electron microscopy; IF, immunofluorescence; Ig, immunoglobulin; LM, light microscopy.

# C3G and IC-MPGN Are Driven by Complement Overactivation

## Overactive Complement System Leads to Glomerulopathy<sup>5,6,21,22</sup>



## Primary and Secondary Causes

### PRIMARY CAUSES

- C3/C5 nephritic factors (autoantibodies) in 50%-80% of patients<sup>5</sup>
- Genetic variance in complement-related genes in up to 25% of patients<sup>5,6</sup>

### COMMON SECONDARY CAUSES

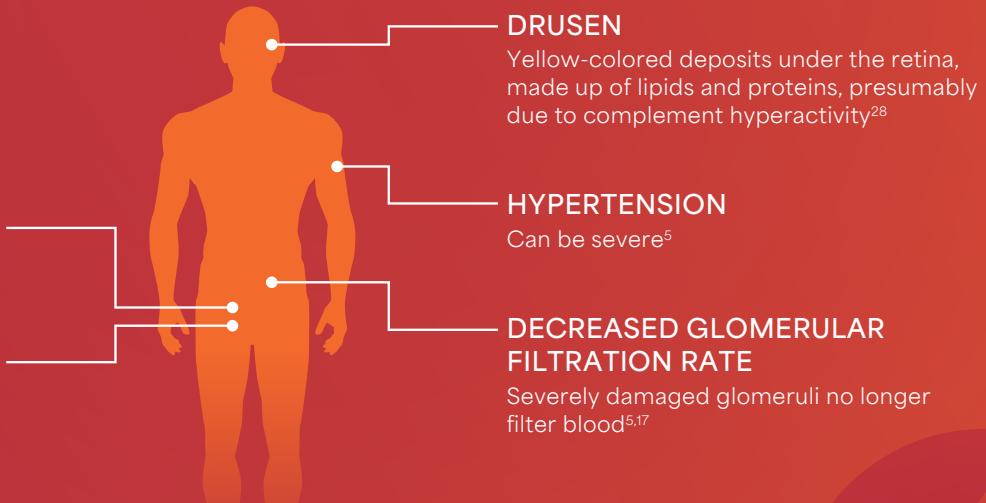
- Chronic infections (eg, hepatitis B/C)<sup>23</sup>
- Autoimmune disease (eg, systemic lupus, Sjögren's syndrome, rheumatoid arthritis)<sup>23</sup>
- Monoclonal gammopathy<sup>23</sup>
- Chronic antibody-mediated rejection (ie, transplant glomerulopathy)<sup>24</sup>
- Malignancy<sup>23</sup>

# C3G and IC-MPGN Are Histopathological Diagnoses

## Signs and Symptoms

### LOW SERUM C3

Due to excessive deposition of C3 fragments in the glomeruli, patients may have low serum C3<sup>11,25,26</sup>


### FATIGUE & EDEMA<sup>27</sup>

### HEMATURIA

Due to damaged glomeruli that allow red blood cells to pass through<sup>5,17</sup>

### PROTEINURIA

Due to damaged glomeruli that allow protein to pass through<sup>5,17</sup>



## Diagnostic Pathway: Essential Role of Kidney Biopsy



### Light Microscopy

- MPGN pattern of injury<sup>6</sup>
- Not sufficient for diagnosis<sup>5</sup>

### Immunofluorescence

- Diagnosis of and differentiation between C3G and IC-MPGN<sup>6</sup>
  - **C3G:** C3 staining  $\geq 2$  OOM more intense than any other immune reactant<sup>5</sup>
  - **IC-MPGN:** immunoglobulin deposits dominant or co-dominant with C3<sup>29</sup>

### Electron Microscopy

- Further distinguishes between DDD and C3GN<sup>5,6</sup>
  - **DDD:** dense, ribbon-like deposits in the glomerular basement membrane<sup>5,21,30</sup>
  - **C3GN:** clusters of deposits in the subendothelial and subepithelial space and mesangium<sup>21,30</sup>

Renal pathology expertise is needed for confirmatory diagnosis

MPGN, membranoproliferative glomerulonephritis; OOM, order of magnitude.

# Treatment Landscape

## Supportive Treatments Do Not Target the Underlying Pathophysiology<sup>5,31</sup>

### Diet Changes<sup>5,31</sup>

- Lower sodium and protein in the diet to reduce the waste load on the kidneys
- Measures that support good health are encouraged

### ACE Inhibitors and ARBs<sup>5</sup>

- Typically used first line
- Aim to reduce proteinuria and control blood pressure
- Substantially improved renal survival in 1 retrospective study

### Immunosuppressive Agents<sup>5</sup>

- Aim to limit the inflammatory effects of complement overactivity
- Data are inconsistent; some studies report an impact on renal survival, whereas others report no change in progression to ESKD

### Plasma Therapy and Exchange<sup>5,17</sup>

- Removes autoantibodies and mutated proteins
- Robust data are lacking

## Complement Inhibitors<sup>5,32</sup>

- Aim to target complement overactivation, the underlying cause of C3G and primary IC-MPGN

## REFERENCES

1. Baines AC, et al. *Blood Rev*. 2017;31(4):213-223.
2. Dobó J, et al. *Front Immunol*. 2018;9:1851.
3. Merle NS, et al. *Front Immunol*. 2015;6:257.
4. Data on file, Apellis Pharmaceuticals, Inc.
5. Smith RJH, et al. *Nat Rev Nephrol*. 2019;15(3):129-143.
6. Caravaca-Fontán F, et al. *Nephron*. 2020;144(6):272-280.
7. Servais A, et al. *Kidney Int*. 2012;82(4):454-464.
8. Zand L, et al. *J Am Soc Nephrol*. 2014;25(5):1110-1117.
9. Caravaca-Fontán F, et al. *Kidney Int Rep*. 2025;10(4):1223-1236.
10. Caravaca-Fontán F, et al. *Nephrol Dial Transplant*. 2023;38(1):222-235.
11. Medjeral-Thomas NR, et al. *Clin J Am Soc Nephrol*. 2014;9(1):46-53.
12. Regunathan-Shenk R, et al. *Am J Kidney Dis*. 2019;73(3):316-323.
13. Frangou E, et al. *Nephrol Dial Transplant*. 2019;34(10):1780-1788.
14. Tarragón B, et al. *Clin J Am Soc Nephrol*. 2024;19(8):1005-1015.
15. Patry C, et al. *Pediatr Nephrol*. 2024;39(12):3569-3580.
16. Arkana Laboratories. Mesangiocapillary proliferation with lobular accentuation. Accessed Jul 1, 2025. [https://www.dropbox.com/scl/fi/nsk7048c2yi94r6bxzte9/Arkana-Labs-Photo-Reference-Library.zip?e=2&file\\_subpath=%2FArkana+Labs+Photo+Rerefence+Library%2FDense+Deposit+Disease%2FMesangiocapillary+Proliferation+with+Lobular+Accentuation.jpg&rlkey=3j34a8afr2cy2ousen1lcx2d](https://www.dropbox.com/scl/fi/nsk7048c2yi94r6bxzte9/Arkana-Labs-Photo-Reference-Library.zip?e=2&file_subpath=%2FArkana+Labs+Photo+Rerefence+Library%2FDense+Deposit+Disease%2FMesangiocapillary+Proliferation+with+Lobular+Accentuation.jpg&rlkey=3j34a8afr2cy2ousen1lcx2d)
17. Schena FP, et al. *Int J Mol Sci*. 2020;21(2):525.
18. Sethi S, et al. *J Am Soc Nephrol*. 2015;26(11):2852-2859.
19. Arkana Laboratories. Dense GBM transformation on EM\_2. Accessed Jul 1, 2025. [https://www.dropbox.com/scl/fi/nsk7048c2yi94r6bxzte9/Arkana-Labs-Photo-Reference-Library.zip?e=3&file\\_subpath=%2FArkana+Labs+Photo+Reference+Library%2FDense+Deposit+Disease%2FDense+GBM+Transformation+on+EM\\_2.jpg&rlkey=3j34a8afr2cy2ousen1lcx2d](https://www.dropbox.com/scl/fi/nsk7048c2yi94r6bxzte9/Arkana-Labs-Photo-Reference-Library.zip?e=3&file_subpath=%2FArkana+Labs+Photo+Reference+Library%2FDense+Deposit+Disease%2FDense+GBM+Transformation+on+EM_2.jpg&rlkey=3j34a8afr2cy2ousen1lcx2d)
20. Arkana Laboratories. Subendothelial deposits with cellular interposition on EM. Accessed Jul 1, 2025. [https://www.dropbox.com/scl/fi/nsk7048c2yi94r6bxzte9/Arkana-Labs-Photo-Reference-Library.zip?e=3&file\\_subpath=%2FArkana+Labs+Photo+Reference+Library%2FC3+Glomerulonephritis%2FSubendothelial+Deposits+with+Cellular+Interposition+on+EM.jpg&rlkey=3j34a8afr2cy2ousen1lcx2d](https://www.dropbox.com/scl/fi/nsk7048c2yi94r6bxzte9/Arkana-Labs-Photo-Reference-Library.zip?e=3&file_subpath=%2FArkana+Labs+Photo+Reference+Library%2FC3+Glomerulonephritis%2FSubendothelial+Deposits+with+Cellular+Interposition+on+EM.jpg&rlkey=3j34a8afr2cy2ousen1lcx2d)
21. Sethi S, et al. *N Engl J Med*. 2012;366(12):1119-1131.
22. Dixon BP, et al. *Kidney Int Rep*. 2023;8(11):2284-2293.
23. Masani N, et al. *Clin J Am Soc Nephrol*. 2014;9(3):600-608.
24. Sablik KA, et al. *Transpl Int*. 2018;31(8):900-908.
25. Pickering MC, et al. *Kidney Int*. 2013;84(6):1079-1089.
26. Zhang Y, et al. *Clin J Am Soc Nephrol*. 2014;9(11):1876-1882.
27. National Kidney Foundation. Accessed Jul 1, 2025. [https://www.kidney.org/sites/default/files/C3G\\_EL-PFDD\\_VoP-Report\\_3-29-18.pdf](https://www.kidney.org/sites/default/files/C3G_EL-PFDD_VoP-Report_3-29-18.pdf).
28. Bradley DT, et al. *Eye (Lond)*. 2011;25(6):683-693.
29. Hou J, et al. *Kidney Int*. 2014;85(2):540-546.
30. Martín B, et al. C3 Glomerulopathy. In: GeneReviews [Internet]. University of Washington; 2018. Accessed Jul 1, 2025. <https://www.ncbi.nlm.nih.gov/books/NBK1425/>.
31. National Kidney Foundation. Accessed Jul 1, 2025. <https://www.kidney.org/kidney-topics/complement-3-glomerulopathy-c3g>.
32. Noris M, et al. *Nephrol Dial Transplant*. 2024;39(2):202-214.